- functorial subgroup
- мат.функторная подгруппа
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Group cohomology — This article is about homology and cohomology of a group. For homology or cohomology groups of a space or other object, see Homology (mathematics). In abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well… … Wikipedia
Homological algebra — is the branch of mathematics which studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract… … Wikipedia
Clifford algebra — In mathematics, Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations of the complex numbers and quaternions.[1][2] The theory of Clifford algebras is intimately connected with the… … Wikipedia
Algebraic topology — is a branch of mathematics which uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism. In many situations this is too much to hope for… … Wikipedia
Algebraic K-theory — In mathematics, algebraic K theory is an important part of homological algebra concerned with defining and applying a sequence Kn(R) of functors from rings to abelian groups, for all integers n. For historical reasons, the lower K groups K0 and… … Wikipedia
Congruence lattice problem — In mathematics, the congruence lattice problem asks whether every algebraic distributive lattice is isomorphic to the congruence lattice of some other lattice. The problem was posed by Robert P. Dilworth, and for many years it was one of the most … Wikipedia
Mapping class group — In mathematics, in the sub field of geometric topology, the mapping class group is an important algebraic invariant of a topological space. Briefly, the mapping class group is a discrete group of symmetries of the space. Contents 1 Motivation 2… … Wikipedia
Dual abelian variety — In mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field K. Contents 1 Definition 2 History 3 Dual isogeny (elliptic curve case) … Wikipedia
Lie algebra — In mathematics, a Lie algebra is an algebraic structure whose main use is in studying geometric objects such as Lie groups and differentiable manifolds. Lie algebras were introduced to study the concept of infinitesimal transformations. The term… … Wikipedia
Pontryagin duality — In mathematics, in particular in harmonic analysis and the theory of topological groups, Pontryagin duality explains the general properties of the Fourier transform. It places in a unified context a number of observations about functions on the… … Wikipedia
Hodge structure — In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. A mixed Hodge… … Wikipedia